xanthone-2-carboxylic acids (23) were converted into alkoxyxanthone carboxylic acids (25a-e) by ether cleavage with HBr in acetic acid followed by alkylation of the resulting phenol.

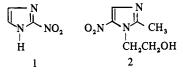
Experimental Section

General Methods. Phenols were coupled with aromatic halides using Cu₂O⁸ in dimethylacetamide (Schemes II, III, and V) and copper powder¹⁰ with anhydrous potassium carbonate in dimethylformamide (Scheme IV). Dicarboxylic acids were cyclized to xanthonecarboxylic acids by polyphosphoric acid⁹ in tetramethylene sulfone or with concd H_2SO_4 . Methyl diphenyl ethers were oxidized to the corresponding diphenylcarboxylic acids by KMnO, in tert-BuOH-H₂O. Methanolysis of 6-chloroxanthone-2-carboxylic acid (18a) was performed as described by Goldberg and Wragg,⁹ except that HMPA was used as solvent.

Acknowledgments. The authors wish to thank Denis J. Kertesz for the preparation of 10c, Ernest Kepel, Wanda Sheehan, Nancy A. Sutter, Janet T. Imagawa, and Margery E. Schuler for the biological data, and Dr. Howard Ringold for helpful comments.

References

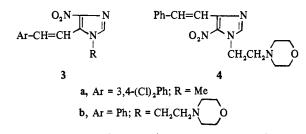
- (1) C. P. Huttrer and E. Dale, Chem. Rev., 48, 543 (1951).
- (2) J. S. G. Cox, Nature (London), 216, 1328 (1967).
- (3) H. Cairns, C. Fitzmaurice, D. Hunter, P. B. Johnson, J. King, T. B. Lee, G. H. Lord, R. Minshull, and J. S. G. Cox, J. Med. Chem., 15, 583 (1972).
- (4) I. Mota, *Immunology*, 7, 681 (1964).
 (5) G. Goose and A. M. J. N. Blair, *ibid.*, 16, 749 (1969).
- (6) Allen and Hanburys Limited, Belgian Patent 759,292 (1971). (7) J. S. H. Davies, F. Scheinmann, and H. Suschitzky, J. Chem.
- Soc., 2140 (1956). (8) R. J. R. Bacon and O. J. Stewart, ibid., 4953 (1965).
- (9) A. A. Goldberg and A. H. Wragg, ibid., 4227 (1958).
- (10) H. Meerwein in "Methoden Der Organischen Chemie," Vol. 6, Part 3, Verlag, Stuttgart.
- (11) A. M. El-Abbady, S. Ayoub, and F. G. Baddar, J. Chem. Soc., 2556 (1960).
- (12) T. Sengoku, Yakugaku Zasshi, 53, 962 (1933).


Antiparasitic Nitroimidazoles. 1. Some 2-Styryl-5-nitroimidazoles

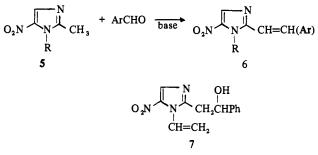
William J. Ross,* William B. Jamieson, and Max C. McCowen

Lilly Research Centre Ltd., Erl Wood Manor, Windlesham, Surrey, England. Received March 22, 1972

A series of 1-substituted-2-styryl-5-nitroimidazoles was prepared by condensing 1-substituted-2-methyl-5-nitroimidazoles with aryl aldehydes in the presence of sodium methoxide. The aryl aldehydes were substituted with aryl, alkyl, alkoxyl, and chloro groups while the 1 substituent on the imidazole nucleus varied from alkyl to hydroxyalkyl to alkylene. The alkylene substituent was introduced by base elimination of the tosylates of the hydroxyalkyl compounds. A number of arylethynyleneimidazoles were also prepared by bromination of the styryl compound followed by didehydrobromination with DBN. All the compounds were tested against Trichomonas vaginalis and Entamoeba histolytica in vitro and in vivo and against various Trypanosoma species in vivo. Structure-activity relationships are discussed and comparisons of biological activity made with established drugs.

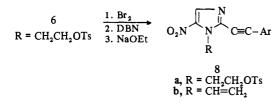

Since the discovery of the antibacterial and antiprotozoal activity of the antibiotic azomycin, 1, 1^{-3} and the subsequent introduction of metronidazole,⁴ 2, as a clinically effective trichomonicide, many papers⁵ have appeared on the biological properties of nitroimidazoles.

Although several papers and patents⁶⁻⁸ have described the preparation of styrylimidazoles and their antitrichomonal and antiamoebic properties in vitro none of the compounds so far discussed appear to have in vivo activity against these protozoa. In an early paper, Ellis, et al., 6 described the preparation of 3a and its in vitro activity against Trichomonas vaginalis but no in vivo activity was reported. Similarly, during the course of our work, Giraldi and his coworkers⁷ described a series of styrylimidazoles, exemplified by 3b and 4, which, although very active against T. vaginalis and Entamoeba histolytica in vitro, were devoid of in vivo activity.


In this paper we describe a series of 2-styryl-5-nitroimidazoles which exhibit a wide range of antiprotozoal activity both in vitro and in vivo against T. vaginalis, E. histolytica, and various Trypanosoma species.

Chemistry. The 2-styryl-5-nitroimidazoles were all prepared by the general route shown in Scheme I followed by modification of the N substituent in appropriate cases.

The N-vinyl series (Table IV) could be prepared by condensing the aromatic aldehyde with 5 ($R = CH=CH_2$) or by base elimination of the tosylate derived from 6 (R =CH₂CH₂OH).


In general, it was better to prepare the N-vinyl series by the latter method because compounds of type 6 (R = vinyl) Scheme I

R = alkyl, hydroxylalkyl, or vinyl

Scheme II

Table I

are less stable than the hydroxyalkyl derivatives toward strong bases.⁹ Condensation of benzaldehyde and 5 (R = CH=CH₂) at room temperature resulted in the isolation of the intermediate alcohol 7 which was easily dehydrated to the required compound 54 (Table IV). In other cases the styryl compound was obtained directly. The methods described in the Experimental Section for the preparation of 5 (R = Et) and 5 (R = CH=CH₂) are superior to literature methods.¹⁰ The acetylenes were prepared as in Scheme II.

The use of the mild base 1,5-diazobicvclo[3,4,0]non-5ene (DBN)¹¹ as the dehydrohalogenating agent is noteworthy as in general it is necessary to use a strong base to generate acetylenes from dihaloalkanes.¹² The presence of the nitroimidazole and phenyl rings presumably activates the hydrogen atoms toward elimination reactions. Since all the styrylimidazoles we prepared had the trans configuration, we tried to prepare a compound with a cis-styryl linkage. However, attempts to convert the trans compound 31 (Table II) into the cis isomer photochemically were of no avail. Reduction of the acetylene 8a (Ar = 4-MePh) with disiamylborane,¹³ a reagent which normally converts acetylenes into cis olefins, gave only a small yield of the trans olefin 31 (Table II), an observation which we cannot explain since Dreiding models imply little steric overcrowding in the cis olefin.

Biological Results. Trichomoniasis. It will be seen from Tables I-V that nearly all compounds inhibited the growth of *T. vaginalis in vitro* at similar levels to metronidazole. No particular substitution pattern seems to favor high *in vitro* activity although in general the tosylates (Table II) and the acetylenes (Table V) appear to be the least active. Introduction of a long alkyl residue into the benzene ring, e.g., compounds 21, 39, and 69, abolished activity. Compounds 52 and 53 were prepared as analogs of compounds described by Giraldi⁷ and in common with many other compounds in Tables I-V were inactive against T. vaginalis in mice when tested according to the method described by Honigberg.¹⁴ None of the compounds were as active as an aqueous suspension of metronidazole against T. vaginalis in mice at 20 mg/kg \times 5 po (Table VI) and all suffered the disadvantage of having to be dosed in PEG400 to obtain maximum activity. Compounds which resulted in less than a 50% reduction in lesion score, compared with the score in untreated infected mice, were considered inactive. In this test metronidazole gave a 100% reduction at 20 mg/kg \times 5 po.

It would appear from the *in vivo* (Table VI) results that only those compounds containing a *p*-alkyl substituent in the benzene ring and having an *N*-vinyl substituent in the nitroimidazole residue show significant activity. The partial exception is compound **50** which contains a *p*-isopropyl group in the benzene ring, but an *N*-Me substituent in the nitroimidazole. Compounds **81**, **82**, and **83** all meet the above criteria, but the benzene ring and the nitroimidazole are joined by an acetylenic instead of an olefinic linkage. This leads to the supposition that for activity the nature of the linkage between the two rings was not of supreme importance provided that they were conjugated. A recent report describes a number of 2-phenyl-5-nitroimidazoles having exceptional antitrichomonal and amoebicidal activity.¹⁵

Amoebiasis. The assessment of antiamoebic activity was based on methods described by Jones¹⁶ for intestinal amoebiasis in rats and Reinertson and Thompson¹⁷ for hepatic amoebiasis in hamsters.

The compounds were much less active against *E. histolytica* in mice and hamsters than metronidazole (Table VI), but the structure-activity relationship was similar to that shown against *T. vaginalis*. In this instance the acetylenes

			O ₂ N N CH	I=CHR		
			CH ₂ CH ₂			
		Yield,			MIC,	µg/ml ⁱ
Compd	R	% c	Mp, °C	Formula ^h	T. vaginalis	E. histolytica
9	Ph ^a	32d	156-157	C ₁₃ H ₁₃ N ₃ O ₃	8.0	8.0
10	2-ClPh ^a	41	188-189	C.H.CINO.	1.0	8.0
11	4-ClPha	37	194-195	$C_{13}H_{12}CIN_{3}O_{3}$	0.5	8.0
12	2-CH ₃ Ph ^a	36	159-160	$C_{14}H_{15}N_{3}O_{3}$	0.25	16.0
13	4-CH ₃ Ph ^{a, b}	21 (77)	145-146 [,]	$C_{14}H_{15}N_{3}O_{3}$	2.0	32.0
14	3,4-(ČH₃)₂Ph ^b	50	159-160	$C_{15}H_{17}N_{3}O_{3}$	0.5	32.0
15	2,4,6-(CH ₂) ₃ Ph ^b	25	148-149	$C_{16}H_{19}N_{3}O_{3}$	8.0	16.0
16	4-C ₂ H _s Ph ^b	40	187-188	$C_{15}H_{17}N_{3}O_{3}$	0.5	16.0
17	4- <i>i</i> -Č₃H ₇ Ph ^a	21	171-172	$C_{16}H_{19}N_{3}O_{3}$	0.5	16.0
18	4-tert-C ₄ H ₉ Ph ^a	32 ^e	152-153	$C_{17}H_{21}N_{3}O_{3}$	1.0	32.0
19	4-sec-C ₄ H ₉ Ph ^b	42^{f}	102-103	$C_{17}H_{21}N_{3}O_{3}$	0.5	32.0
20	4-cyclo-C ₄ H ₁₁ Ph ^b	278	53-55	$C_{19}H_{23}N_{3}O_{3}$	2.0	64.0
21	4- <i>n</i> -C ₈ H ₁₇ Ph ^b	24	92-93	$C_{21}H_{29}N_{3}O_{3}$	>1000	>1000
22	4-PhPh ^b	79	201-202	$C_{19}H_{17}N_{3}O_{3}$	2.0	16.0
23	l-Naphthyl	40	192-193	$C_{17}H_{15}N_3O_3$	1.0	16.0
24	2-Naphthyl	73	196-197	$C_{17}H_{15}N_{3}O_{3}$	1.0	32.0
25	2-MeOPh ^b	82	1 99-2 00	C ₁₄ H ₁₅ N ₃ O ₄	0.5	8.0
26	3-MeOPh ^b	72	134-135	C ₁₄ H ₁₅ N ₃ O ₄	0.25	8.0
27	4-MeOPh ^a	19	152-153	C ₁₄ H ₁₅ N ₃ O ₄	4.0	16.0
28	3,4,5-(MeO) ₃ Ph ^b	38	152-153	C ₁₆ H ₁₉ N ₃ O ₆	0.5	16.0
2	Metronidazole				0.5	32.0

a,bPrepd by method A or B. ^cAll compds were recrystd from EtOH unless otherwise noted. Recrystn solvents were: ^dEtOAc; ^eEtOH-H₂O; ^fEtOH-petr ether; ^gEtOAc-petr ether. ^hAll compds were analyzed for C, H, N. ^lDetd by serial diln *in vitro*.

Та	ble	Π

$O_2N \xrightarrow{\mu} N^{\mu} CH=CHR$ $CH_2CH_2OSO \xrightarrow{\mu} CH_3$								
		Yield,	Ċ.		MIC, J	ug/ml ^e		
Compd	R	% <i>a</i>	Mp, °C	Formula ^d	T. vaginalis	E. histolytica		
29	2-CIPh	895	210-212 dec	C ₂₀ H ₁₈ ClN ₃	8.0	128		
30	2-CH_Ph	85	177-178	C ₂₁ H ₂₁ N ₃ O ₅ S	4.0	128		
31	4-CH ₃ Ph	61	155-156	C ₂₁ H ₂₁ N ₃ O ₅ S	2.0	128		
32	3,4-(ČH ₃) ₂ Ph	13	172-173	C ₂₂ H ₂₃ N ₃ O ₅ S	8.0	128		
33	2,4,6-(CH ₃) ₃ Ph	66	154-155	C23H25N3O5S	16.0	32		
34	4-C,H,Ph	87	134.5-135.5	C ₂₂ H ₂₃ N ₃ O ₅ S	1.0	32		
35	4- <i>i</i> -Č,H,Ph	71	148-149	C ₂₃ H ₂₅ N ₃ O ₅ S	4.0	64		
36	4-tert-C ₄ H ₉ Ph	57	146-147	C ₂₄ H ₂₇ N ₃ O ₅ S	4.0	>1000		
37	4-sec-C ₄ H ₂ Ph	86 <i>°</i>	119-120	C ₂₄ H ₂₇ N ₃ O ₅ S	4.0	64		
38	4-cyclo-C, H ₁₁ Ph	83	129-130	C ₂₆ H ₂₆ N ₃ O ₆ S	4.0	100-1000		
39	$4 - n - C_{8}H_{12}Ph^{2}$	80	130-131	C28H35N3O5S	>1000	>1000		
40	4-PhPh	52	169-170	C ₂₆ H ₂₃ N ₃ O ₅ S	2.0	8.0		
41	1-Naphthyl	37	169-170	C ₂₄ H ₂₁ N ₃ O ₅ S	1.0	32.0		
42	2-Naphthyl	56	186-187	C ₂₄ H ₂₁ N ₃ O ₅ S	2.0	100-1000		
43	2-MeOPh	75	169-170	$C_{21}H_{21}N_{3}O_{6}S$	2.0	100-1000		
44	3-MeOPh	81	185-188	C ₂₁ H ₂₁ N ₃ O ₆ S	100-1000	>1000		
45	3,4,5-(MeO) ₃ Ph	74	159-160	C ₂₃ H ₂₅ N ₃ O ₈ S	2.0	32		

^{*a*}All compds were crystd from EtOH except where noted. ^{*b*}Recrystd EtOAc. ^{*c*}Recrystd EtOAc-petr ether. ^{*d*}All compds were analyzed for C, H, N. ^{*e*}Determined by serial diln.

			O ₂ N	$ \xrightarrow{N} \underset{R_2}{\overset{\parallel}{\longrightarrow}} CH = CHR_1 $			
			Yield,			MIC,	µg/ml ^h
Compd	R ₁	R ₂	%a,1	Mp, °C	Formulag	T. vaginalis	E. histolytica
46	Ph	Me	51b	198-199	C ₁₂ H ₁₁ N ₃ O ₂	8.0	8.0
47	Ph	Et	50 <i>c</i>	146-148	C ₁₃ H ₁₃ N ₃ O ₂	1.0	8.0
48	4-MePh	Me	57 đ	217-218	$C_{13}H_{13}N_{3}O_{2}$	4.0	100-1000
49	4-MePh	Et	35 <i>c</i>	127-129	$C_{14}H_{15}N_{3}O_{2}$	1.0	16.0
50	4-i-C ₃ H ₂ Ph	Me	12 ^b	142-143	$C_{15}H_{17}N_{3}O_{2}$	1.0	32
51	4-i-C ₃ H ₇ Ph	Et	25	94–95 <i>e</i>	$C_{16}H_{19}N_{3}O_{2}$	1.0	32
52	4-MePh	CH ₂ CH ₂ NO	9	125-126	$C_{18}H_{22}N_4O_3$	0.2	Inactive
53	4-MePh	CH ₂ CH ₂ Cl	77 f	159-160	$C_{14}H_{14}CIN_{3}O_{2}$	0.5	

^aRecrystn solvents. ^bEtOH. ^cEtOAc-petr ether. ^dEtOAc. ^ePetr ether. ^fCHCl₃-DMF. ^gAll compds were analyzed for C, H, N. ^hDetermined by serial diln. ^fPrepd by method F.

81, 82, and 83 were inactive against the intestinal form of amoebiasis in the rat.

Trypanosomiasis. All compounds were tested against infections of *Trypanosoma rhodiesiense*, *Tryp. cruzi*, *Tryp.* gambiense, and *Tryp. congolense* in mice using the procedures described by Hawking.¹⁸ Only compounds listed in Tables III, IV, and V showed activity against these organisms in vivo. Compound 54 showed marginal activity against *Tryp. rhodiesiense*, *Tryp. gambiense*, and *Tryp. congolense* (Table VII) and was, in fact, the lead compound.

In an attempt to improve this activity and to delineate the structural requirements for antitrypanosomal activity, compound 54 was modified in several ways. The molecule was divided into three substructures (see diagram) which could be varied independently or in unison.

Introduction of chlorine atoms into the benzene ring gave compounds 74-76 which were devoid of antitrypanosomal activity as were the methoxy-substituted compounds, 77-80 (Table IV).

Substitution of the benzene ring with a 4-Me group to give 55 resulted in an increase in antitrypanosomal activity

vis-a-vis 54, and it is of interest that this compound showed activity against *Tryp. cruzi*, the causative organism of Chagas' disease. The 2-Me isomer (59) of 55 was inactive against all the trypanosomes while substitution of 55 with more methyl groups, to give 57 and 58, resulted in the diminution and abolition of antitrypanosomal activity, respectively. Extension or branching the 4-alkyl residue gave a number of compounds, notably 65 and 68, with a similar spectrum and level of activity to 55. However, when the chain was extended to C₈ as in 69, activity was greatly reduced while the *tert*-Bu compound 62 was completely inactive. Replacement of the N-vinyl group by an N-propenyl function gave compounds with similar activity to the parent compounds.

The N-alkyl analogs 48-51 were all less active than the corresponding N-vinyl compounds, while 46 and 47, analogs of the lead compound, were inactive. Replacement of the olefinic linkage (B) by an acetylenic linkage to give compounds 81-83 resulted in a marked reduction in activity against trypanosomes.

From these results it was concluded that for maximum antitrypanosomal activity in this series of compounds, the

Table	IV
-------	----

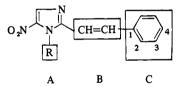
	$O_2N \xrightarrow[R_2]{N} CH = CHR_1$							
			Yield,	к ₂		MIC	, µg/mlf	
Compd	R ₁	R ₂	% <i>a</i>	Mp, °C	Formula ^c	T. vaginalis	E. histolytica	
54	Ph	CH=CH,d	33	159-160	C ₁₃ H ₁₁ N ₃ O ₂	1.0	8.0	
55	4-CH ₃ Ph	CH=CH,	79	137-138	$C_{14}H_{13}N_{3}O_{2}$	2.0	16.0	
56	4-CH₃Ph	CH=CHĆH,	19	147-148	$C_{15}H_{15}N_{3}O_{2}$	2.0	32.0	
57	$3,4-(CH_3)_2Ph$	CH=CH ₂	20	136-137	$C_{15}H_{15}N_{3}O_{2}$	0.5	16.0	
58	2,4,6-(CH ₃) ₂ Ph	CH=CH ₂	84	162-163	$C_{16}H_{17}N_{3}O_{2}$	8.0	100-1000	
59	2-CH ₃ Ph	CH=CH,	77	165-166	$C_{14}H_{13}N_{3}O_{2}$	1.0	64.0	
60	4- <i>i</i> -C ₃ H ₂ Ph	CH=CH ₂	83	122-123	$C_{16}H_{17}N_{3}O_{2}$	1.0	32.0	
61	4-i-C,H,Ph	CH=CHCH,	19	90-91	$C_{17}H_{19}N_{3}O_{2}$	4.0	16.0	
62	4-tert-C ₄ H ₉ Ph	CH=CH ₂	83	153-154	$C_{12}H_{10}N_{3}O_{2}$	0.5	1 6 .0	
63	4-C ₂ H ₅ Ph	CH=CH ₂	89	135-136	$C_{15}H_{15}N_{3}O_{2}$	1.0	32.0	
64	4-C,H,Ph	CH=CHCH,	10	115-116	$C_{16}H_{17}N_{3}O_{2}$	2.0	10-100	
65	4- <i>n</i> -C,H,Ph	CH=CH ₂	80	101-102	$C_{16}H_{17}N_{3}O_{2}$	4.0	16.0	
66	4-n-C,H,Ph	CH=CH,	74	88-89	$C_{17}H_{19}N_{3}O_{2}$	4.0	32.0	
67	4- <i>n</i> -C ₄ H ₉ Ph	CH=CHCH3	14	80-81	$C_{18}H_{21}N_{3}O_{2}$	16.0	64.0	
68	4-sec-C4H,Ph	CH=CH,	61	77-78	$C_{17}H_{19}N_{3}O_{2}$	4.0	16 .0	
69	4- <i>n</i> -C ₈ H ₁₇ Ph	CH=CH,	57	65-66	$C_{21}H_{27}N_{3}O_{2}$	>1000	>1000	
70	4-cyclo-C ₆ H ₁₁ Ph	CH=CH ₂	79	141-142	$C_{19}H_{21}N_{3}O_{2}$	4.0	32.0	
71	4-PhPh	CH=CH,	87	222-223	$C_{19}H_{15}N_{3}O_{2}$	2.0	100-1000	
72	1-Naphthyl	CH=CH ₂	88	174-175	$C_{17}H_{13}N_{3}O_{2}$	2.0	100-1000	
73	2-Naphthyl	CH=CH ₂	95	212-213	$C_{17}H_{13}N_{3}O_{2}$	4.0	1 6 .0	
74	2-ClPh	CH=CH,	78 <i>b</i>	203-204	$C_{13}H_{10}CIN_3O_2$	4.0	64.0	
75	4-PhPh	CH=CH,	52	154-155	$C_{13}H_{10}CIN_{3}O_{2}$	2.0	1 6 .0	
76	3,4-(Cl),Ph	$CH=CH_2^e$	10	138	$C_{13}H_9Cl_2N_3O_2$	2.0	32.0	
77	2-MeOPh	CH=CH,	72	178-179	$C_{14}H_{13}N_{3}O_{3}$	0.25	1 6 .0	
78	3-MeOPh	CH=CH,	83	138-139	$C_{14}H_{13}N_{3}O_{3}$	0.5	64.0	
79	4-MeOPh	CH=CH ₂	13	155-156	$C_{14}H_{13}N_{3}O_{3}$	1.0	3 2 .0	
80	3,4,5-(MeO) ₃ Ph	CH=CH ₂	87	165-166	$C_{16}H_{17}N_{3}O_{5}$	0.5	32.0	

^{*a*}All compds were prepd by method G and crystd from EtOH except where noted. ^{*b*}Crystd from acetone. ^{*c*}All compds were analyzed for C, H, N. ^{*d*}, *e*Prepd by methods D and E, respectively. ^{*f*}Results were obtained by serial diln.

Table V						
			O₂N [↓] N [↓] C≡C CH=CH ₂	- R		- 1a
		Yield,			MIC,	µg/ml ^c
Compd	R	% a	Mp, °C	Formula ^b	T. vaginalis	E. histolytica
81	CH,	23	179-180	C ₁₄ H ₁₁ N ₃ O ₂	8.0	128.0
82	CH(CH ₃) ₂	32	134-135	$C_{16}H_{15}N_{3}O_{2}$	4.0	64.0
83	C ₂ H ₅	34	151-152	$C_{15}H_{13}N_{3}O_{2}$	64.0	100-1000

^aAll compds were crystd from EtOH. ^bAnalyzed for C, H, N. ^cObtained by serial diln.

Table VI


	% activity ^a				
		E. histolytica			
	T. vaginalis,	Rats (intest),	Hamsters (hepatic),		
Compd	mice, $20 \text{ mg/kg} \times 5 \text{ po}$	$100 \text{ mg/kg} \times 5 \text{ po}$	$100 \text{ mg/kg} \times 5 \text{ ip}$		
50	65	Inactive	83		
55	50	100	100		
58	60	50	Inactive		
60	55	Inactive	100		
65	90	100	67		
68	68	100	100		
81	83	Inactive	75		
82	83	Inactive	79		
83	66	Inactive	67		
Metronidazole	100	100 (25 mg/kg × 5 po)	$100 (25 \text{ mg/kg} \times 5 \text{ po})$		

^aT. vaginalis. Per cent activity is calculated from the extent of visible diminution of diffuse visceral lesions together with reduction of parasites present in lesions. E. histolytica Rat. Per cent activity is calculated from the extent of visible reduction of pathological change in the caecum together with diminution of parasites present in the caecal lesions. E. histolytica Hamster. Per cent activity is calculated from the extent of diminution of liver necrosis together with the reduction of parasites present in the necrotic tissue. In these tests normal and infected controls were included.

Table VII. Minimum Dose Level in mg/kg 100% Effective against Trypanosomal Infections in Mice

	Tryp. rhodiesiense ^a		Tryp.	cruzib	Tryp. gambiense ^a	Tryp. congolense ^a
Compd	Ip	Po	Ip	Po	Ip	Ip
48	200	Inactive	Ina	ctive	N. D.	N. D.
49	>200	Inactive	Ina	ctive	N. D.	N. D.
50	200	Inactive	200	Inactive	N. D.	N. D.
51	200	Inactive	Ina	ctive	N. D.	N. D.
53	100	Inactive	Ina	ctive	50	200
54	>500	Inactive	Ina	ctive	>500	>500
55	50	200	200	500	25	100
56	100	200	500	Inactive	25	50
57	>500	Inactive	Ina	ctive	N. D.	N. D.
60	200	Inactive	200	Inactive	100	100
61	100	200	>500	>500	200	200
63	200	200	200	Inactive	50	200
64	100	Inactive		ctive	50	>100
65	50	100	100	>500	25	100
66	50	Inactive	200	>500	100	25
67	50	500	Ina	ctive	N. D.	N. D.
68	50	100	100	200	50	100
6 9	500	>200	Ina	ctive	N. D.	N. D.
70	200	>500	200	Inactive	50	100
81	>500	Inactive			>200	>200
82	500	Inactive	500	Inactive	200	>200
uramin	1	Inactive	Inactive		5	Inactive at 5
entamidine	1.25	Inactive	Inactive		5.0	>5
Diminazene	1	Inactive	>10		5.0	10
delarsoprol	0.75	0,5	Inactive		0.75	Inactive

^aMice were dosed for four consecutive days, commencing on the day of infection. 100% efficacy is equivalent to 30-day postinfection survival with negative parasitemia. ^bMice were dosed for five consecutive days commencing on the day of infection. 100% efficacy is equivalent to 60-day postinfection survival with negative parasitemia. N. D. = Not done.

following criteria were necessary. (1) The benzene ring should be substituted by a small 4-alkyl group which itself should carry a hydrogen atom on the α -carbon atom. (2) The linkage between the nitroimidazole and the aryl function should be olefinic. (3) The nitroimidazole should carry an *N*-vinyl substituent.

Although none of the compounds reported in this paper approaches the absolute antitrypanosomal activity of pentamidine, suramin, diminazine, or melarsoprol, nevertheless they represent a new class of compounds having broad spectrum antiparasitic activity.

Experimental Section

Melting points were taken on a Gallenkamp apparatus (Registered Design No. 889339) using capillaries and are uncorrected. All compds were characterized by ir, uv, nmr, and elemental analyses (C, H, N) which were within $\pm 0.4\%$ of the theoretical value.

1-(2-Hydroxyethyl)-5-nitro-2-(4-isopropylstyryl)imidazole. Method A (17). A soln of 10.5 g (0.45 g-atom) of Na in 150 ml of MeOH was added rapidly to a stirred soln of 51.1 g (0.3 mole) of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole and 60 ml (ca. 0.4 mole) of 4-isopropylbenzaldehyde in 500 ml of EtOH at 70°. Stirring was conted for about 0.5 hr at 70°. The dark brown reaction soln was cooled to room temp and dild with an equal vol of H₂O, and the crystals were filtered. Recrystn from EtOH gave 19.1 g (21%) of product, mp 171-172°.

1-(2-Hydroxyethyl)-5-nitro-2-(4-methylstyryl)imidazole. Method B (13). A soln of 21 g (0.9 g-atom) of Na in 300 ml of MeOH was added rapidly to a stirred soln of 103 g (0.6 mole) of 1-(2-hy-droxyethyl)-2-methyl-5-nitroimidazole and 100 ml (ca. 0.8 mole) of 4-tolualdehyde in 300 ml of DMSO at room temp. After standing overnight, the dark brown soln was stirred and carefully dild with 800 ml of H_2O . Filtration and washing of the crystals with two 11-ml portions of EtOH- H_2O (1:1 v/v) gave 125.5 g (77%) of product, mp 143-144°.

Tosylates. General Method C. The compound prepd as by method A or B (0.1 mole) was dissolved in a min vol of dry $C_{g}H_{g}N$ and cooled in ice bath, and TsCl (0.11 mole) was added gradually as a solid or a soln in a min vol of $C_{g}H_{g}N$ with stirring. The soln was left overnight at room temp. Where a crystal mass formed the solid was filtered off and recrystd from EtOH. Where no crystals formed, the soln was poured with stirring onto ice-H₂O (3 1). The solid was filtered off and recrystd from EtOH to yield the desired tosylate. 5-Nitro-2-styryl-1-vinylimidazole. Method D (54). 2-Methyl-

5-Nitro-2-styryl-1-vinylimidazole. Method D (54). 2-Methyl-5-nitro-1-vinylimidazole (5 g, 0.032 mole) and benzaldehyde (5 ml, ca. 0.05 mole) were dissolved in 50 ml of EtOH, and 3 ml of 4 N NaOH soln was added. The brownish reaction soln was left at room temp for 3 hr with occasional shaking. A crystn solid pptd which was filtered and washed with cold EtOH to yield 5.3 g of hydrated product, 2-(2'-hydroxy-2'-phenyl)ethyl-5-nitro-1-vinylimidazole, mp 165-166°. This latter compd (16.5 g, 0.064 mole) was refluxed for 1 hr with 80 ml of Ac₂O. The soln was poured onto 300 g of ice and the pptd solid was filtered, washed with H₂O, and recrystd from EtOH to give 7.4 g (33%) of product, mp 159-160°.

2-(3,4-Dichlorostyryl)-5-nitro-I-vinylimidazole. Method E (76). 2-Methyl-5-nitro-I-vinylimidazole (15.3 g, 0.1 mole) and 3,4-dichlorobenzaldehyde (20 ml, 0.15 mole) were dissolved in 100 ml of EtOH, and 9 ml of 4 N NaOH soln was added. The soln was gently refluxed for 3 hr. The dark brown soln was cooled at 0° overnight, and the crystals were filtered off and washed with cold EtOH. Recrystn from EtOH (carbon) gave 3.2 g (10%) of product, mp 138°.

2-(3,4-Dimethylstyryl)-5-nitro-1-vinylimidazole. Method F (57). A soln of 3.5 g (0.15 g-atom) of Na in 60 ml of MeOH was added rapidly to a stirred soln of 15.3 g (0.1 mole) of 2-methyl-5-nitro-1-vinylimidazole and 20 ml (0.15 mole) of 3,4-dimethylbenzaldehyde in 100 ml of EtOH at 70°. Stirring was contd for 0.5 hr at 70°. The dark brown soln was cooled at 0° for several hours, and the crystals were filtered off. Recrystn from EtOH gave 2.7 g (20%) of product, mp 136-137°.

2-(4'-Methylstyryl)-5-nitro-1-vinylimidazole. Method G (55). A soln of 1.25 g (0.054 g-atom) of Na in 45 ml of EtOH was added rapidly to a stirred suspension of 23 g (0.054 mole) of tosylate (24) in 300 ml of EtOH at 70°. Stirring was contd for 0.5 hr at 70°. After cooling and standing overnight at room temp, the yellow solid was filtered off and thoroughly washed with H_2O . Recrystn from EtOH gave 10.9 g (79%) of product, mp 137-138°.

2-(4'-Methylstyryl)-5-nitro-1-propenylimidazole (56). 1-(2-Hydroxy-*n*-propyl)-2-methyl-5-nitroimidazole (18.5 g, 0.1 mole), prepared as in ref 19, was allowed to react with 4-tolualdehyde *via* method B. The crude bright yellow cryst solid (12.5 g, 44%) was converted *via* method C to the tosylate (9.0 g, 58%), which in turn was allowed to react *via* method G to give 4.1 g (73%) of required product, mp $147-148^{\circ}$.

l-(2-Chloroethyl)-2-(4-methylstyryl)-5-nitroimidazole (53). Compd 13 (27.3 g, 0.1 mole) was stirred in 60 ml of DMF at room temp. SOCl₂ (7.5 ml, >0.1 mole) was added dropwise to the clear soln. A crystal mass formed after *ca*. 5 min, and, after standing for 1 hr, the crystals were filtered, washed with C₆H₆, and dried to give 22.5 g (77%) of product, mp 159-160°.

2-(4-Methylstyryl)-1-(2-morpholinoethyl)-5-nitroimidazole (52). Tosylate 31 (21.4 g, 0.05 mole) and 50 ml of morpholine were warmed on the steam bath for 2 hr. The dark brown soln was cooled and dild with 50 ml of $C_{\rm e}H_{\rm e}$, followed by 200 ml of Et_2O pptg out morpholine tosylate. The supernatant was C treated, evapd (*in vacuo*) to low vol, and treated with *n*-hexane to dissolve out morpholine. The resultant oily solid was dissolved in $C_{\rm e}H_{\rm e}$ - Et_2O (75:25 v/v) and chromatographed on a silica gel column (500 g) ultimately yielding a yellow solid. Crystn from EtOAc-Et₂O gave 1.5 g (9%) of product, mp 125-126°.

5-Nitro-2-(4-tolylethynylene)-1-vinylimidazole (81). Tosylate 31 (71.3 g, 0.17 mole) was stirred in 500 ml of CCl₄, and 9.5 ml of bromine was added dropwise. The bromine color gradually faded, and the mixture was refluxed gently for 1 hr. After standing overnight at room temp, the cream-colored crystals were filtered to give 88.0 g (90%) of the required dibromo compound, mp 156-157°. A suspension of this dibromo compound (29.4 g, 0.05 mole) was stirred in 150 ml of DMSO. DBN (12.4 g, 0.1 mole) was added dropwise to the suspension maintaining the temp at 25-30°. The mixture was heated to 80° and maintained for 3 hr. The yellow-brown soln was cooled and added dropwise with stirring to 750 ml of ice H₂O. The cryst ppt which formed initially soon darkened and became sticky. The supernatant was decanted, and the residual solid was dissolved in CHCl₃, C treated, and evapd to give an oil which was extracted repeatedly with petr ether (60-80°) to give a bright yellow cryst solid (13.2 g, 61%) which was treated via method G to give 3.8 g (43%) of the required acetylenic product, mp 179-180°.

2-Methyl-5-nitro-1-vinylimidazole (5, R = CH=CH₂). 1-(2-Hydroxyethyl)-2-methyl-5-nitroimidazole (50 g, 0.29 mole) was treated by method C to yield 86.1 g (91%) of the tosylate, mp 153°, which was treated as in method G. After cooling to room temp for several hours, the dark brown reaction mix was filtered, and the filtrate was evapd to a vol of ca. 100 ml. The concentrate was dild with 500 ml of H₂O and extd with Et₂O (four 250-ml portions). The combined exts were C treated, dried over Na₂SO₄, and evapd to a vol of ca. 100 ml, and *n*-hexane was added carefully to ppt a reddish oil which was discarded. The extract was further dild with *n*-hexane to ppt 22.9 g (55%) of the desired product as pale yellow needles, mp 49-50°.

1-Ethyl-2-methyl-5-nitroimidazole (5, R = Et). A suspension of 127 g (1.0 mole) of 2-methyl-5-nitroimidazole in 200 ml of DMF containing 165 g of $(C_2H_s)_2SO_4$ (1.07 moles) was stirred and heated on a steam bath for 3 hr. The DMF was evapd *in vacuo*, and the resi-

due was poured into H_2O when solid (starting material) sepd. This was filtered off, and the filtrate was brought to pH 5 when further solid separated. This was filtered off and added to first solid (total 50 g). The filtrate was basified with solid NaHCO₃ and extd with CHCl₃ (five 200-ml portions). The CHCl₃ extract was dried over MgSO₄, the solvent removed *in vacuo*, and the oily residue distd *in vacuo* to give 37.5 g (24%) of the required product, bp 110-112° (1.0 mm). This was identical (ir, nmr) with material prepared by the literature method.¹⁰

Acknowledgments. We thank Dr. M. D. Pittam, Mr. P. G. Robins, Mr. B. Ramsahye, and Miss F. C. Wright for the biological results. Dr. N. C. Franklin and Dr. D. M. Rackham are thanked for the nmr data and Mr. G. Maciak of the Lilly Research Laboratories, Indianapolis, Ind., for the micro-analytical data on the compounds described in this paper.

References

- K. Maeda, T. Osato, and H. Umezawa, J. Antibiot., 6A, 182 (1953).
- (2) S. Nakamura, Pharm. Bull., 3, 379 (1955).
- (3) H. Horie, J. Antibiot., 9, 168 (1956).
- (4) C. Cosar, T. Jolon, and M. Bonazet, Ann. Inst. Pasteur, 96, 238 (1959).
- (5) Antiparasitic Section, Annu. Rep. Med. Chem. (1965), and thereafter.
- (6) G. P. Ellis, C. Epstein, C. Fitzmaurice, L. Goldberg, and G. H. Lord, J. Pharm. Pharmacol., 16, 801 (1964).
- (7) P. N. Giraldi, V. Mariotti, and I. de Carneri, J. Med. Chem., 11, 66 (1968).
- (8) Merck and Co., Inc., U. S. Patent 3,472,864 (Oct 14, 1969); Merck and Co., Inc., French Patent 1,423,701 (Aug 6, 1964).
- (9) A. F. Cockerill, R. C. Harden, and D. N. B. Mallen, J. Chem. Soc., Perkin Trans. 2, in press.
- (10) C. Cosar, C. Crisan, R. Horclois, R. M. Jacob, J. Robert, S.
- Tchelitisheff, and R. Vanpre, Arzneim. Forsch., 16, 23 (1966). (11) K. Eiter and H. Oediger, Justus Liebigs Ann. Chem., 682, 62 (1965).
- (12) G. Kobrich and P. Buck in "Chemistry of Acetylenes," H. G. Viehe, Ed., Marcel Dekker, New York, N. Y., 1969, pp 100-101.
- (13) H. C. Brown and G. Zweifel, J. Amer. Chem. Soc., 83, 3834 (1961).
- (14) M. Honigberg, J. Parasitol., 47, 545 (1961).
- (15) A. C. Cuckler, C. M. Malanga, and J. Conroy, Amer. J. Trop. Med. Hyg., 19, 916 (1970).
- (16) W. R. Jones, Ann. Trop. Med. Parasitol., 40, 130 (1946).
- (17) J. W. Reinertson and P. E. Thompson, Proc. Soc. Exp. Biol. Med., 76, 518 (1951).
- (18) F. Hawking, *Exp. Chemother.*, 1, Chapter 5 (1963).
- (19) Rhone-Ponlenc S. A., Eire Patent 1058/64 (Oct 12, 1964).

Metabolism of 2-(4-Chlorophenyl)thiazol-4-ylacetic Acid (Fenclozic Acid) and Related Compounds by Microorganisms

Ralph Howe,* Ronald H. Moore, Balbir S. Rao, and Alan H. Wood

Imperial Chemical Industries Limited, Pharmaceuticals Division, Mereside, Alderley Park, Macclesfield, Cheshire, England. Received January 26, 1972

Eleven metabolites produced by microorganisms from the antiinflammatory agent fenclozic acid (1) differed from those produced by mammals. There was no overlap. Microorganisms preferred to attack the acetic acid side chain whereas mammals hydroxylated the 4-chlorophenyl ring. The alcohol metabolite (3) had similar antiinflammatory activity to fenclozic acid, and the amides 10-13 showed an interesting level of potency, but no metabolite was more potent. A novel metabolic α -hydroxylation of the alcohol 3 has been shown to occur with 100% stereospecificity.

2-(4-Chlorophenyl)thiazol-4-ylacetic acid (1) (fenclozic acid) is a potent antiinflammatory agent in rats, mice, and guinea pigs.¹⁻³ It has been evaluated in patients with rheumatoid arthritis, but was withdrawn when it was found to

produce cholestatic jaundice in patients receiving a high initial dose.⁴ The action of microorganisms on fenclozic acid has been studied in order to compare the metabolites with those produced by mammals.⁵ Desired metabolites